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A semi-implicit, semi-lagrangian algorithm suitable for the simulation of the dry,
adiabatic, nonhydrostatic atmospheric dynamics is introduced and analysed. Height
is used as vertical coordinate, without the customary terrain following normalization,
thus resulting in a stable, robust, and efficient numerical scheme which allows for
applications to mesoscale flows over complex orography. Results of simulations in
typical lee waves test cases are presented, which show good agreement with the
corresponding analytical solutions.c© 2000 Academic Press
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1. INTRODUCTION

The high resolution simulation of atmospheric flows over complex orography poses
many difficult numerical problems. Mesoscale and cloud scale simulations require the use
of nonhydrostatic equations, so that sound waves must be either filtered by the anelastic
approximation or dealt with numerically, for example, by semi-implicit or split-explicit
methods (see, e.g., [9, 16]). Both these approaches have their respective shortcomings,
those of semi-implicit methods being mainly connected to the complex structure of the three-
dimensional Helmholtz equations to be solved at each timestep; see, e.g., the discussion in
[35]. The choice of model equations which effectively select a particular spatial scale should
then be avoided, if the aim of a consistent use of the same model from the synoptic scale down
to smaller scales is to be pursued (see [42] and the models presented in [37]). An accurate
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description of the lower boundary is obviously necessary, but the use of customary terrain
following vertical coordinate systems may induce large truncation errors (see, e.g., [41])
and create conditioning problems for semi-implicit methods around very steep orography.
A further requirement is that of a straightforward and efficient implementation on massively
parallel computers, one of the main computational tools available both for operational and
research purposes.

In this paper, a numerical scheme for the equations of a dry, adiabatic, nonhydrostatic
atmosphere is presented, which aims at providing a possible solution to some of these
problems by an appropriate choice of the vertical coordinate and of the lower boundary
discretization. The nonhydrostatic equations are considered in advection form and the height
above mean sea level,z, is used as the vertical coordinate, without employing the customary
terrain following normalization. The lower boundary is discretized by an approach which
has been quite successful in estuarine modelling (see, e.g., [5–7]) and which yields an
accurate representation of the lower boundary without any complication of the dynamical
equations because of metric terms. All the computational cells in the present discretization
are rectangular boxes. The thickness of the bottom cells is allowed to vary and may assume
any nonnegative value. The orographic heights are assigned at the cell sides, and the possibly
different values at each side of the cell are taken into account in a finite volume discretization
of the pressure equation. Exact boundary conditions can then be imposed on the prognostic
variables in a simple way. In the context of the analysis of boundary discretizations of [1],
the present approach is somewhere in between thepartial stepapproach and thepiecewise
slope representation. The computational cells are not intersected by the slopes, as it would
happen in models with a full finite volume discretization. On the other hand, although the
orographic profile is approximated by a step mountain, piecewise linear slopes are implictly
taken into account in the finite volume discretization of the pressure equation. It is also to be
remarked that the present treatment of the lower boundary has nothing in common with the
step-mountain coordinateproposed by Mesinger (see, e.g., [22]), which employs a pressure
based vertical coordinate.

A two timestep, semi-implicit, semi-lagrangian time discretization is then introduced.
For the implicit part, a weakly nonlinear algebraic system is obtained, which is symmetric
and well conditioned. A fixed point iteration procedure is proven to converge to the discrete
solution at each timestep under suitable assumptions. Simple and efficient solvers can be
applied for the iterative solution, such as the preconditioned conjugate gradient method,
thus reducing one of the heaviest computational tasks. The von Neumann stability analysis
yields unconditional stability for the proposed method.

Since the proposed scheme is expected to be especially appropriate for simulation of
mesoscale flows, various numerical tests have been carried out in the case of two-dimensional
stratified flows over idealized mountains and development of thermals. The results obtained
are in good agreement with the corresponding analytical solutions or asymptotic expansions,
provided that the lower boundary is sufficiently well approximated by the computational
grid, which is shown to happen at grid spacings that are realistic for high resolution models.
Furthermore, one or two nonlinear iterations are usually sufficient to reach convergence at
each timestep, thus showing that there is no loss in efficiency due to the solution of the
nonlinear system.

The semi-implicit time discretization of the Euler equations has been used in atmospheric
modelling in [9, 43]. The application of semi-lagrangian techniques to mesoscale simula-
tions has been questioned (see, e.g., [2]), but various such models exist and others are
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currently being developed (see, e.g., [10, 28, 32, 33, 42]). As remarked in [11], in spite
of the problems at horizontal Courant numbers larger than one when dealing with station-
ary solutions, timesteps three to six times larger than those of typical Eulerian schemes
are still allowed by the semi-lagrangian approach. Furthermore, the use of cells with ar-
bitrary thickness for the vertical discretization implies that high vertical Courant numbers
can easily arise, so that the semi-lagrangian approach is a quite convenient choice for a
fully multidimensional discretization of the advection terms. It is however to be remarked
that the semi-implicit discretization proposed in this paper is independent of the choice
of the advection scheme, so that, for example, the good properties of the algebraic sys-
tem obtained still hold if an Eulerian scheme is used for advection. A numerical scheme
using the proposed lower boundary discretization coupled to a split-explicit time discretiza-
tion and Eulerian advection is currently been investigated by J. Steppeler of the Deutscher
Wetterdienst and a similar approach has also been used in a mesoscale model developed by
G. Tripoli at University of Wisconsin (see [38, 45]).

The greatest inconvenience of the non-normalized vertical coordinatez is well known
to be the practical difficulty to obtain a uniform resolution close to the Earth’s surface.
Due to the limitations of previously available hardware, this leads to an almost universal
use of terrain following coordinates both for synoptic and mesoscale models. However, the
use of properly stretched vertical discretization grids allows us to reach uniform resolution
below a given reference height and to enlarge progressively the discretization step above. If
the main contribution to the global boundary fluxes is due to terrain below some reference
height, as it can be assumed, for example, in a mesoscale model when no large plateaux
are present, a fine vertical resolution can be maintained in this way in most of the boundary
layer. At the same time, all the necessary upper grid layers can be included with limited
computational overhead.

2. THE NONHYDROSTATIC MODEL EQUATIONS

The Reynolds averaged equations for a dry, fully compressible atmosphere can be written
in advection form as

d logρ

dt
+∇ · v = 0

dv
dt
+ Fv = −cpθ∇π − gk + µ1v+ ∂

∂z

(
ν
∂v
∂z

)
(1)

dθ

dt
= µ1θ + ∂

∂z

(
ν
∂θ

∂z

)
+ Qθ .

Here, Cartesian(x, y, z) coordinates have been used, the velocity field is given byv=
(u, v, w), k= (0, 0, 1) denotes the vertical direction, and

d

dt
= ∂

∂t
+ v · ∇ (2)

is the Lagrangian derivative. Furthermore,π will denote the Exner pressure function,T is
the absolute temperature,ρ is the density,R is the ideal gas constant,cp, cv are, respectively,
the constant pressure and constant volume specific heats of dry air, andp0 is a reference



NUMERICAL SCHEME USING THE HEIGHT COORDINATE 189

pressure value. The thermodynamic variables for an ideal gas can then be defined as

π =
(

p

p0

)κ
, θ = T

π
, ρ = p0π

cv
R

Rθ
, κ = R

cp
,

1

κ
− 1= cv

R
. (3)

The turbulent viscosity coefficientsµ, ν are assumed to be known nonnegative functions
of the flow field and thermodynamic variables. The Coriolis acceleration coefficients are
assumed to be constant and are written in matrix form as

F =

 0 − f 0

f 0 0

0 0 0

 .
Since

logρ = cv
R

logπ − logθ + log
p0

R
,

Eqs. (1) can then be rewritten as

d logπ

dt
+ R

cv
∇ · v = R

cv

d logθ

dt

dv
dt
+ Fv = −cpθ∇π − gk + µ1v+ ∂

∂z

(
ν
∂v
∂z

)
(4)

dθ

dt
= µ1θ + ∂

∂z

(
ν
∂θ

∂z

)
+ Qθ .

The numerical scheme presented in this paper only deals with the inviscid and adiabatic
case. Therefore, turbulent viscosities and diabatic heating will be omitted in what follows.
Reference profiles of Exner pressure5=5(z) and potential temperature2=2(z) which
are assumed to represent a stably stratified, hydrostatic atmosphere are then introduced for
convenience, so thatπ =5+ π̃ , d2

dz > 0, and

cp2
d5

dz
= −g. (5)

θ will denote from now on the deviation from the profile2, thus yielding the model equations

d log(5+ π̃)
dt

+ R

cv
∇ · v = 0 (6)

dv
dt
+ Fv = −cp(2+ θ)∇(5+ π̃)− gk (7)

dθ

dt
+ wd2

dz
= 0. (8)

In order to avoid cancellation of almost equal terms, the equation for the vertical velocity
is then rewritten as

dw

dt
= −cp2

∂π̃

∂z
+ g

θ

2
− cpθ

∂π̃

∂z
. (9)
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It should be noticed that, although it is in fact possible to linearize Eq. (6) around the
reference pressure profile, so as to obtain a linear equation for ˜π , the nonlinear equation
is retained here. In this way, the resulting model is much less dependent on the reference
profile chosen. Furthermore, in the context of a semi-implicit discretization approach, the
termw

d log5
dz which arises in the linearization would yield a further, undesired coupling

between the pressure and vertical velocity equations.
The formulation of appropriate boundary conditions for atmospheric models is a widely

debated problem for which only partial solutions exist (see, e.g., [15, 27, 30, 37]). For
the purposes of the present implementation, an absorbing layer (see [28] for a detailed
description) will be employed at the upper and lateral boundaries in order to avoid reflection
of outgoing waves. For the elliptic equation which the semi-implicit discretization will yield
for the nonhydrostatic pressure ˜π , a Neumann boundary condition will be imposed. At the
lower boundary, the velocity component normal to the boundary is taken to be zero, and a
Neumann condition of zero flux will be imposed for all other variables. As it will be clear
in the following section, the proposed boundary discretization results in a step mountain
approximation of the orographic profile, so that the velocity component normal to the
boundary coincides with eitheru, v, orw.

3. COMPUTATIONAL DOMAIN AND GRID ARRANGEMENT

The equations are considered on the domain

D = {(x, y, z) : (x, y) ∈ [0, Lx] × [0, L y], h(x, y) ≤ z≤ Lz},

whereh is some representation of the orographic profile. A staggered discretization grid with
at mostNx × Ny× Nz computational cells is introduced. The horizontal grid spacings are
assumed to be constant for simplicity and are defined as1x= Lx/Nx,1y= L y/Ny. How-
ever, the model has also been implemented on stretched horizontal grids without substantial
modification of the discretization approach. Let thenz̃k−1/2 denote the height above mean
sea level of the lower face of cellk andz̃k the height above mean sea level of the center of cell
k, for k= 1, . . . , Nz+ 1. The vertical grid spacings are defined by1z̃k= z̃k+1/2 − z̃k−1/2,
for k= 1, . . . , Nz.

Only the cells above the Earth’s surface belong to the effective computational domain.
Bottom cells are denoted for eachi, j by the indexesk=mi, j . Specifically,

mi, j = min
1≤k≤Nz

{
k: hi, j < z̃k+ 1

2

}
.

Dependency of such indexes oni, j is often omitted for clarity in what follows. Fur-
thermore, heights of the cell faces above orography are introduced for eachi, j and for
k=mi, j , . . . , Nz. These will in general depend oni, j, k and can be defined as

1zi+ 1
2 , j,k
=
{

max
(
z̃k+ 1

2
− hi+ 1

2 , j
, 0
)

for k = mi+1. j andk = mi, j

1zi+ 1
2 , j,k
= 1z̃k otherwise

1zi, j,k = max
(
1zi+ 1

2 , j,k
,1zi− 1

2 , j,k
,1zi, j+ 1

2 ,k
,1zi, j− 1

2 ,k

)
.

Top and bottom cells will be assumed of rectangular shape with horizontal dimensions
1x,1y and vertical dimension1zi, j,k. Each cell is numbered at its center with indicesi, j ,



NUMERICAL SCHEME USING THE HEIGHT COORDINATE 191

FIG. 1. Vertical section of the computational grid.

andk. The discreteu velocity is defined at half integeri and integersj andk; v is defined
at integersi, k, and half integerj ; while w, θ , and2 are defined at integersi, j , and half
integersk. Orography profile heights are defined both atu andv locations. Finally,π and
all other three-dimensional scalar variables are defined at integersi, j, k. At points where
they are not defined, the discrete variables are generally computed by simple arithmetical
mean of the nearest defined values.

An example of the vertical section of such a computational grid is shown in Fig. 1,
together with the corresponding idealized orography profile. It can be observed that, for
example,1z2+1/2,4,1z3+1/2,4 take different values, as well as1z3+1/2,4,1z4+1/2,4, and
1z3+1/2,2,1z4+1/2,2, respectively. Furthermore,1z3,4=1z2+1/2,4, and1z4,4=1z4+1/2,4.
Vertical walls are taken into account by assuming the corresponding1zi+1/2, j,k to be zero.
For example, in the grid shown in Fig. 1,1z3+1/2,2= 0, as well as1z3+1/2,3,1z2+1/2,2,
and1z2+1/2,3. Furthermore, the small black squares denote gridpoints where the boundary
conditionw= 0 is imposed, while the small white squares denote gridpoints where the
boundary conditionu= 0 is imposed. The grid which is built in this way is different from
those of the so-calledshaved cellapproaches (see, e.g., [1]), since the orographic profile is
in fact approximated by a step mountain. However, sufficient accuracy will be achieved by
the finite volume discretization of Eq. (6). Such discretization is performed by assuming
no contribution to the flux of the areas below orography on each face, thus accounting for
the different heights at the cell faces. It is also to be remarked that in this discretization
of the lower boundary, velocity components normal to the boundary coincide with either
u, v, orw values, so that imposing the appropriate boundary condition on velocity is rather
straightforward. Difference operators are then introduced as

δxφi+ 1
2 , j,k
= φi+1, j,k−φi, j,k

1x
, δyφi, j+ 1

2 ,k
= φi, j+1,k−φi, j,k

1y

δzφi, j,k+ 1
2
= φi, j,k+1−φi, j,k

1zi, j,k+ 1
2
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for variables defined at the cell centers and as

δxφi, j,k =
φi+ 1

2 , j,k
− φi− 1

2 , j,k

1x
, δyφi, j,k =

φi, j+ 1
2 ,k
− φi, j− 1

2 ,k

1y

δzφi, j,k =
φi, j,k+ 1

2
− φi, j,k− 1

2

1zi, j,k

for variables defined at the cell sides. A discrete divergence operator is also defined as

div(u, v, w)i, j,k = 1

1zi, j,k

[
1zi+ 1

2 , j,k
ui+ 1

2 , j,k
−1zi− 1

2 , j,k
ui− 1

2 , j,k

1x

+
1zi, j+ 1

2 ,k
vi, j+ 1

2 ,k
−1zi, j− 1

2 ,k
vi, j− 1

2 ,k

1y
+ wi, j,k+ 1

2
− wi, j,k− 1

2

]
.

4. A SEMI-IMPLICIT AND SEMI-LAGRANGIAN SOLUTION ALGORITHM

A semi-implicit, semi-lagrangian discretization scheme is now introduced. In order to
obtain a scheme whose stability is independent of the sound wave speed, the gradient of
the Exner pressure function in the momentum equations and the velocity divergence in
the continuity equation are discretized implicitly in time. A coupling is also to be main-
tained between the buoyancy term in thew equation and the vertical advection term in the
equation forθ . Furthermore, for simplification of the resulting algebraic system, the terms
cpθ

∂π
∂x , cpθ

∂π
∂y in the horizontal momentum equations and the termcpθ

∂π̃
∂z in the vertical

momentum equation are discretized explicitly in time (see also [9, 10, 28, 42]). This relies
on the implicit assumption thatθ is not too large with respect to2, somewhat in the spirit
of the classical Boussinesq approximation, so that no severe stability restrictions on the
discretization timestep result. The discretization of Eqs. (6)–(9) at the internal nodes is then
given by

log

(
1+ π̃

n+1
i, j,k

5k

)
+ αR

cv
div(un+1, vn+1, wn+1)i, j,k1t = (Gπ)ni, j,k (10)

un+1
i+ 1

2 , j,k
+ αcp2kδxπ̃

n+1
i+ 1

2 , j,k
1t = (Gu)ni+ 1

2 , j,k
(11)

vn+1
i, j+ 1

2 ,k
+ αcp2kδyπ̃

n+1
i, j+ 1

2 ,k
1t = (Gv)ni, j+ 1

2 ,k
(12)

wn+1
i, j,k+ 1

2
− gα

θn+1
i, j,k+ 1

2

2k+ 1
2

1t + αcp2k+ 1
2
δzπ̃

n+1
i, j,k+ 1

2
1t = (Gw)ni, j,k+ 1

2
(13)

θn+1
i, j,k+ 1

2
+ αd2

dz

∣∣∣∣
k+ 1

2

wn+1
i, j,k+ 1

2
1t = (Gθ)ni, j,k+ 1

2
, (14)

where the right hand side terms are defined, respectively, as

(Gπ)ni, j,k = L(logπ)ni, j,k − log(5k)− (1− α)R
cv

Ldiv(un, vn, wn)i, j,k1t

(Gu)ni+ 1
2 , j,k
= L(u− (1− α)cp2δxπ̃1t − cpθδxπ̃1t)ni,+ 1

2 , j,k
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(Gv)ni, j+ 1
2 ,k
= L(v − (1− α)cp2δyπ̃1t − cpθδyπ̃1t)ni, j,+ 1

2 ,k

(Gw)ni, j,k+ 1
2
= L

(
w − (1− α)cp2δzπ̃1t − cpθδzπ̃1t + g(1− α) θ

2
1t

)n

i, j,k+ 1
2

(Gθ)ni, j,k+ 1
2
= L

(
θ − (1− α)d2

dz
w1t

)n

i, j,k+ 1
2

.

It is to be remarked that, due to the definition of the pressure values at the center of each
computational cell, the approximation of the horizontal pressure gradients is generally only
first order accurate in the bottom cells wherek=mi, j . Here the symbolL denotes the inter-
polation at the departure point of the lagrangian trajectory ending in(i1x, j1y, k1z) at
time(n+ 1)1t (see, e.g., [36]). As it is easily seen, a first order average along the trajectory
has been employed for the semi-lagrangian time discretization, where one must require
α ∈ [ 1

2, 1] for stability. Higher order averages could also be considered (see, e.g., [31]). In
the present implementation, bicubic Lagrange interpolation has been used at the trajectory
departure point. In the three lowermost cells above orography, bilinear interpolation is used.
The trajectories are computed by an explicit second order Runge–Kutta method, which is
applied to each trajectory with a timestep that is an appropriate fraction of1t depend-
ing on the local Courant number, so as to avoid crossing of the computed characteristics
(this substepping algorithm is described in detail in [3, 7]). In the trajectory computation,
wind components are extrapolated at timen+ 1

2. As a result of the substepping algorithm
employed, all the trajectory departure points lie in the computational domain.

Furthermore, the discretization of the Coriolis terms has been omitted here for simplic-
ity of the presentation. They can be easily included by a semi-implicit operator splitting
approach, which, although inadequate for synoptic scale applications (see, e.g., [44]), is
sufficiently accurate for simulation of mesoscale flows. It is then to be remarked that, in
the finite volume discretization of Eq. (6) given by Eq. (10), the normal velocity on the
areas of each face below orography has been taken to be zero, thus accounting for the
varying orographic height at the cells faces. As a result of the orography approximation,
the normal derivatives at the boundary coincide with the derivatives with respect tox, y,
andz, respectively. Therefore, imposing zero flux boundary conditions on ˜π andθ is quite
straightforward, as well as imposing the free slip boundary condition on the staggered
velocity components.

Substitution of Eq. (14) into Eq. (13) is now performed, to obtain

wn+1
i, j,k+ 1

2
= Ak+ 1

2
(Gw)ni, j,k+ 1

2
− αcp Ak+ 1

2
2k+ 1

2
δzπ̃

n+1
i, j,k+ 1

2
1t, (15)

where

Ak+ 1
2
=
1+ g

α21t2

2k+ 1
2

d2

dz

∣∣∣∣∣
k+ 1

2

−1

and where(Gw)ni, j,k+1/2 has now been redefined as

(Gw)ni, j,k+ 1
2
= L

(
w − (1− α)cp2δzπ̃1t − cpθδzπ̃1t + g(1− α) θ

2
1t

)n

i, j,k+ 1
2

+α g

2k+ 1
2

(Gθ)ni, j,k+ 1
2
1t.
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Substitution of the discrete Eqs. (11), (12), and (13) into Eq. (10) yields then

log

(
1+ π̃

n+1
i, j,k

5k

)
− α21t2Rcp

cv
div
(
2δxπ̃

n+1,2δyπ̃
n+1, A2δzπ̃

n+1
)

i, j,k = ψn
i, j,k, (16)

where

ψn
i, j,k = (Gπ)ni, j,k −

αR

cv
div((Gu)n, (Gv)n, A(Gwn))i, j,k1t.

For eachi, j, k, Eq. (16) can be rewritten as

1zi, j,k log

(
1+ π̃

n+1
i, j,k

5k

)

+
[
an

i+ 1
2 , j,k
+ an

i− 1
2 , j,k
+ bn

i, j+ 1
2 ,k
+ bn

i, j− 1
2 ,k
+ cn

i, j,k+ 1
2
+ cn

i, j,k− 1
2

]
π̃n+1

i, j,k

−an
i+ 1

2 , j,k
π̃n+1

i+1, j,k − an
i− 1

2 , j,k
π̃n+1

i−1, j,k − bn
i, j+ 1

2 ,k
π̃n+1

i, j+1,k − bn
i, j− 1

2 ,k
π̃n+1

i, j−1,k

− cn
i, j,k+ 1

2
π̃n+1

i, j,k+1− cn
i, j,k− 1

2
π̃n+1

i, j,k−1 = 1zi, j,kψ
n
i, j,k, (17)

where

an
i+ 1

2 , j,k
= α2 cpR1t2

cv1x2
1zn

i+ 1
2 , j,k

2k

bn
i, j+ 1

2 ,k
= α2 cpR1t2

cv1y2
1zn

i, j+ 1
2 ,k
2k

cn
i, j,k+ 1

2
= α2 cpR1t2

cv1zi, j,k+ 1
2

Ak+ 1
2
2k+ 1

2
.

After the solution of the nonlinear system given by (17), the values of the velocities at time
n+ 1 are updated with the implicit corrections to the pressure gradient, and the value of
potential temperature at timen+ 1 is computed by Eq. (14).

For i = 1, . . . , Nx, j = 1, . . . , Ny, andk=mi, j , . . . , Nz, Eqs. (17) constitute a weakly
nonlinear system of at mostNx × Ny× Nz equations. As a consequence of the choice
of the vertical coordinatez and of keeping the pressure equation in nonlinear form, the
linear part of this system is given by a seven-diagonal, symmetric, and positive definite
matrix, so that its solution can be computed, for example, by fixed point iteration based
on the repeated application of the conjugate gradient method with simple preconditioning.
It can be checked directly that arbitrarily complex orography and flow fields do not affect
the good conditioning of the system. Since it can be shown in several test cases that no
more than two nonlinear iterations are usually needed, a gain in efficiency is expected with
respect to methods which require the solution of nonsymmetric systems. Furthermore, the
simplification of the matrix structure is also expected to yield a greater efficiency of parallel
implementations, by a diminished need for communication among processors.
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5. CONVERGENCE OF THE NONLINEAR ITERATIONS

The numerical scheme introduced in the previous sections requires the solution of the
large weakly nonlinear system (17) at each timestep. In order to solve efficiently such a
system, it is convenient to define

dn
i, j,k =

1zi, j,k

5k
+ an

i+ 1
2 , j,k
+ an

i− 1
2 , j,k
+ bn

i, j+ 1
2 ,k
+ bn

i, j− 1
2 ,k
+ cn

i, j,k+ 1
2
+ cn

i, j,k− 1
2

and

fi, j,k
(
π̃n+1

i, j,k

) = 1zi, j,k

{
log

(
1+ π̃

n+1
i, j,k

5k

)
− π̃

n+1
i, j,k

5k

}

so that Eq. (17) can be rewritten as

fi, j,k
(
π̃n+1

i, j,k

)+ dn
i, j,kπ̃

n+1
i, j,k − an

i+ 1
2 , j,k

π̃n+1
i+1, j,k − an

i− 1
2 , j,k

π̃n+1
i−1, j,k − bn

i, j+ 1
2 ,k
π̃n+1

i, j+1,k

− bn
i, j− 1

2 ,k
π̃n+1

i, j−1,k − cn
i, j,k+ 1

2
π̃n+1

i, j,k+1− cn
i, j,k− 1

2
π̃n+1

i, j,k−1 = 1zi, j,kψ
n
i, j,k, (18)

wherei = 1, . . . , Nx, j = 1, . . . , Ny, k=mi, j , . . . ,Mi, j . Equations (18) constitute a non-
linear system of the form

f(x)+ Ax = b, (19)

whereA is a seven-diagonal, symmetric, diagonally dominant matrix which can then be
easily shown by the Gershgorin theorem (see, e.g., [39]) to be positive definite.f, x are here
vectors inRNx×Ny×Nz. The fixed point iterations defined by

x0 = initial guess obtained, e.g., from π̃n

(20)
Axk+1 = b− f(xk)

are easily proven to converge to the solution of (19), provided that

‖A−1‖
∥∥∥∥ ∂f
∂x

∥∥∥∥ < 1,

where‖ · ‖ denotes the matrix norm subordinate to the euclidean vector norm. The matrix
valued functionH= ∂f

∂x is diagonal and is given componentwise by

hi, j,k(π̃i, j,k) = −1zi, j,k

5k

π̃i, j,k

5k + π̃i, j,k
.

It can then be checked directly that, for convergence to be assured, it is sufficient that
5k<1zi, j,k and|π̃n

i, j,k|<5k/2. Considering that the nonhydrostatic correction is usually
much smaller in value than the reference hydrostatic profile, and that the Exner pressure is
usually normalized assumingp0= 105 Pa, this means that allowing a minimum1zi, j,k= 2 m
will be sufficient to ensure convergence in realistic applications to large scale flows. Other
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iteration procedures could be considered, such as the generalized Newton method, possibly
leading to improved performance. However, it is to be remarked that in several test cases a
single fixed point iteration is sufficient for each timestep. At each iteration, the linear system
in (20) is to be solved, for example, by some number of preconditioned conjugate gradient
iterations. Application of block tridiagonal preconditioning based on the discretization of the
vertical derivatives terms, as suggested in [13, 14], yields a quite efficient solution algorithm.
Furthermore, the tolerance used in the stopping criterion for the conjugate gradient is
rescaled with the norm of the right hand side of the linear system (see, e.g., [29]). As a
result, in several test cases as little as five iterations are required by the preconditioned
conjugate gradient method.

6. NUMERICAL RESULTS FOR TWO-DIMENSIONAL FLOWS OVER OROGRAPHY

Equations (6)–(9) constitute in principle a complete model of the dry, inviscid, adiabatic
atmospheric dynamics on all physical scales. However, the proposed discretization scheme
is expected to yield the greatest advantages and to display maximum efficiency for mesoscale
simulations. For this reason, the scheme has been tested on several cases of two-dimensional
flows over orography, in order to compare the results with known analytical solutions or
their asymptotic expansions (see, e.g., [19, 23–26] and references therein). An isothermal
atmosphere withT = 273 K has generally been assumed, so thatN= 0.0187 s−1. Reference
potential temperature is computed accordingly and the reference pressure profile is obtained
from the discrete hydrostatic equation. The full nonlinear model was used in all the tests
carried out. The time averaging parameterα has been given values in the range (0.51,
0.53). The tolerance parameters were set atε= 10−7 for the fixed point iterations to solve
the nonlinear system and atε= 10−8 for the linear conjugate gradient iterations, but the
tolerance for the conjugate gradient has always been rescaled with the norm of the right
hand side as previously remarked.

As a preliminary test, the model has been run with zero initial velocities, pressure,
and potential temperature perturbations over various steep orographic profiles, such as a
10,000-m high rectangular mountain. Various cell aspect ratios and reference temperature
profiles were used. In all cases, no generation of spurious flows due to the presence of steep
slopes has been observed.

Several standard tests have then been performed with aversiera2 of Agnesi mountain
profile given by

h(x) = h0

1+ ((x − x0)/a)2
, 0≤ x ≤ L ,

whereh0,aare the maximum height and half-width of the mountain, respectively. The profile
is centered at a pointx0 and L is the width of the computational domain. In all the tests
x0= L

2 . The parameter values used are the same as for the tests presented in [28] for another
semi-implicit and semi-lagrangian model also based on the fully compressible equations.
The reference horizontal Courant number is usually taken to be approximately 0.5. In all

2 The straightforward translation of this old Italian word isfemale devilor witch. However, it is quite sure
that early investigators of this curve such as Grandi and Agnesi used the word as a technical one, related to the
geometric properties of the curve, see, e.g., [20, 26].
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FIG. 2. Horizontal velocity in a linear hydrostatic stationary lee wave test case.

the tests, the orographic profile was inserted abruptly in the horizontally homogeneous flow
at initial time.

A stationary test in the linear hydrostatic regime has been performed, i.e., withaN
U

much smaller than 1. More precisely, the model has been run witha= 16 km,h0= 1 m,
at the resolution1x= 3 km,1z= 250 m. An initial horizontal velocityU = 32 m/s was
prescribed. The horizontal velocity and the vertical velocity obtained at the rescaled time
t∗ = Ut

a = 80 with1t = 40 s are plotted in Figs. 2, 3. The corresponding vertical momentum

FIG. 3. Vertical velocity in a linear hydrostatic stationary lee wave test case.
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FIG. 4. Normalized vertical momentum flux in a linear hydrostatic stationary lee wave test case.

flux, normalized by its analytic value, is plotted in Fig. 4. It can be observed that the result is
quite close to 1 throughout the undamped region below 10 km. A stationary test in the linear
nonhydrostatic regime, i.e., withaN

U of the order of 1, has been run witha= 500 m,h0=
100 m, at the resolution1x= 100 m,1z= 250 m. An initial horizontal velocityU =
14 m/s was prescribed. The vertical velocity obtained at the rescaled timet∗ = Ut

a = 120
with 1t = 4 s is plotted in Fig. 5. The corresponding vertical momentum flux, normalized
by the analytic linear hydrostatic value, is plotted in Fig. 6. It can be observed that the
computed value is approximately 0.28, which can be compared with the analytic estimate
of 0.3 for the nonhydrostatic case (see the references in [28]).

The linear time-dependent test case proposed in [34] was also performed. A potential
temperature perturbation was placed atx= 150 km in a 400 km wide and 12 km high box
without orography. An initial horizontal velocityU = 20 m/s was prescribed, and the spatial
resolution used was1x=1z= 1 km. The contours of potential temperature perturbations
at timet = 3000 s are shown in Fig. 7 and compare well with the structure displayed by the
analytical solution. In this transient case, no more than 6 conjugate gradient iterations per
timestep were necessary.

A nonlinear, hydrostatic stationary test has then been run assuminga= 16 km,h0= 800 m,
at the resolution1x= 2.8 km,1z= 200 m and initial horizontal velocityU = 32 m/s. For
this test case, temperature has been chosen so thatN= 0.02 s−1. The horizontal velocity,
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FIG. 5. Vertical velocity in a linear nonhydrostatic stationary lee wave test case.

FIG. 6. Normalized vertical momentum flux in a linear nonhydrostatic stationary lee wave test case.
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FIG. 7. Potential temperature perturbations in a linear nonhydrostatic time-dependent test case.

vertical velocity, and potential temperature contours obtained at the rescaled timet∗ = Ut
a =

172 with1t = 30 s are plotted in Figs. 8–10. It can be observed that the results agree well
with those of [28]. The final steady state is reached quite slowly, but convergence to the
analytical value of about 1.1 is clearly displayed in Fig. 11 (see again the references in
[28]). A plot of the velocity field in this test case is also given in Fig. 12. In this type of plot,
the vertical velocity component is rescaled and for each cell the velocity components have
been interpolated linearly at the cell center. In order to show that the method also performs

FIG. 8. Horizontal velocity in a nonlinear hydrostatic stationary lee wave test case.
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FIG. 9. Vertical velocity in a nonlinear hydrostatic stationary lee wave test case.

well when the mountain intersects a larger number of grid levels, a similar plot is shown in
Fig. 13 for the same test case at the vertical resolution of 60 m.

Several nonlinear, nonhydrostatic regime stationary test cases have been run. In these
tests, enough resolution had to be employed in order to reproduce steep orography profiles
in a sufficiently accurate way on the computational grid described in Section 3. Otherwise,
the approximated orography is too coarse and the computed flow stagnates or recirculates
downsteam of the mountain where high vertical walls are present. Since the pressure gradient

FIG. 10. Potential temperature in a linear hydrostatic lee wave test case.
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FIG. 11. Normalized vertical momentum flux profile in a nonlinear hydrostatic stationary lee wave test case.

FIG. 12. Velocity field in a nonlinear hydrostatic lee wave test case.
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FIG. 13. Velocity field in a nonlinear hydrostatic lee wave test case run at vertical resolution1z= 60 m.

terms are only first order accurate at the lowest model level, sufficient resolution is also
necessary in order to keep this discretization error small. However, as it will be seen, the
grid spacings required to obtain accurate results throughout the computational domain are
realistic for high resolution simulations. Furthermore, even in the case of a coarse mountain
description, the flow is always computed correctly above the top of the mountain.

A first test was performed with an Agnesi profile assuminga= 1000 m,h0= 900 m,
so that the aspect ratioh0

a = 0.9, at the resolution1x= 200 m,1z= 100 m and initial
horizontal velocityU = 13.28 m/s. With these values of the parameters, the inverse Froude
number Na

U is about its critical value. The potential temperature, horizontal velocity, and
vertical velocity contours obtained at timet = 2400 s with1t = 4 s are plotted in Figs. 14–
16. It can be observed that the steep wave pattern downstream of the obstacle is well

FIG. 14. Potential temperature in a nonlinear nonhydrostatic lee wave test case.
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FIG. 15. Horizontal velocity in a nonlinear nonhydrostatic lee wave test case.

reproduced (see, e.g., the analytical solution presented in [24] for a similar case) and that
the flow accelerates down the slope as expected. A plot of the typical velocity field in this
test case is also given in Figs. 17 and 18 at various resolutions.

In order to test the performance of the model with even steeper orography, the same test
was repeated with a 900-m high and 200-m wide rectangular mountain placed atx= 45 km
at the resolution1x= 300 m,1z= 100 m. The potential temperature contours and velocity
field obtained at timet = 2500 s with1t = 5 s are plotted in Figs. 19–20. It is to be remarked

FIG. 16. Vertical velocity in a nonlinear nonhydrostatic lee wave test case.
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FIG. 17. Velocity field in a nonlinear nonhydrostatic lee wave test case run at resolution1x=1z= 200 m.

that the time step employed is 5 times that used in [28] in a similar steep orography test
of the MC2 model. Furthermore, convergence of the iterative solver at each timestep was
obtained with the same computational effort as in the case with smooth orography (no more
than two nonlinear iterations which needed on average a total of about 10 preconditioned
conjugate gradient iterations).

Finally, a nonlinear, nonhydrostatic time-dependent test was also run. The development
of a warm bubble placed in an isentropic atmosphere at rest was studied, with parameters

FIG. 18. Velocity field in a nonlinear nonhydrostatic lee wave test case run at resolution1x= 150 m,
1z= 80 m.
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FIG. 19. Potential temperature in a flow over a thin rectangular obstacle.

analogous to those used in [8]. The potential temperature perturbation obtained at time 600 s
with 1t = 0.25 s and a resolution of1x=1z= 20 m is shown in Fig. 21. No analytical
solution is available in this case, but the computed results agree well with the corresponding
reference numerical solution presented in [8].

In all the tests, numerical results are in good agreement with the analytical or approxi-
mated solutions available, provided that the computational grid approximates the mountain
slope sufficiently well. This is shown to be the case for grid spacings that are realistic for
high resolution simulations. Furthermore, the efficiency of the proposed method has been
demonstrated, since all the main features of dry mountain wave dynamics have been re-
produced at reduced computational cost and without any restriction on the steepness of the
orography involved.

FIG. 20. Velocity field downstream of a thin rectangular obstacle.
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FIG. 21. Potential temperature perturbations in a nonlinear nonhydrostatic time-dependent test case (rising
warm bubble in an isentropic atmosphere).

7. CONCLUSIONS

A semi-implicit, semi-lagrangian scheme for the fully elastic, nonhydrostatic equations
of atmospheric motion has been developed, using a Cartesian coordinate system with height
as the vertical coordinate. No terrain following normalization was employed. As a result, a
numerical algorithm is obtained, which only requires the solution of a symmetric and well
conditioned system at each timestep. Furthermore, no spurious flows are generated around
steep orography. Numerical simulations of well known lee wave test cases demonstrate the
efficiency, robustness, and accuracy of the proposed scheme for high resolution mesoscale
simulations. Further research work is in progress to perform three-dimensional idealized
test cases and to extend the same discretization approach to viscous, moist, and diabatic
dynamics.

APPENDIX: WELL POSEDNESS AND STABILITY ANALYSIS

The linearization of Eqs. (6)–(8) around an hydrostatic and stably stratified profile con-
stitutes a well posed initial value problem in the sense of Kreiss (see, e.g., [17, 18]). This
well posedness analysis is presented here for completeness, since it has been dealt with
in the seminal paper [27] only in the context of the anelastic approximation. The study of
the proper initial and boundary value problem is of rather difficult formulation, therefore
it will only be shown here that the appropriate frozen coefficient initial value problem is
well posed. By the Lax–Richtmyer equivalence theorem, this will then imply convergence
of any stable and consistent finite difference approximation of the corresponding linearized
equations.

Consider then the linearization of Eqs. (6)–(8) around a constant flow field of compo-
nentsU,V , and 0, respectively, and reference profiles of Exner pressure5 and potential
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temperature2 satisfying d2
dz > 0 and the hydrostatic assumption (5). The corresponding

constant coefficients linear initial value problem can be obtained by computing2,5, and
their derivatives at some fixed value ofz. This problem can be written in vector form as

∂u
∂t
+ A

∂u
∂x
+ B

∂u
∂y
+ C

∂u
∂z
= Du, (21)

where

A =


U 5R

cv
0 0 0

cp2 U 0 0 0

0 0 U 0 0
0 0 0 U 0
0 0 0 0 U

 , B =


V 0 5R

cv
0 0

0 V 0 0 0
cp2 0 V 0 0

0 0 0 V 0
0 0 0 0 V



C =


0 0 0 5R

cv
0

0 0 0 0 0
0 0 0 0 0

cp2 0 0 0 0

0 0 0 0 0

 , D =



0 0 0 − d5
dz 0

0 0 f 0 0

0 − f 0 0 0

0 0 0 0 g
2

0 0 0 − d2
dz 0


, u =


π

u
v

w

θ

 .

Equation (21) defines a well posed system whose first order part is hyperbolic (see, e.g.,
[18, 40]). To show this, notice that the symbol of the first order operator applied tou is
given byQ(k)= i (k1A+ k2B+ k3C), that is,

Q(k) = i



k1U + k2V 5Rk1
cv

5Rk2
cv

5Rk3
cv

0

cp2k1 k1U + k2V 0 0 0

cp2k2 0 k1U + k2V 0 0

cp2k3 0 0 k1U + k2V 0

0 0 0 0 k1U + k2V

 .

Introducing the diagonal matrix

E =



√
cp2 0 0 0 0

0
√

5R
cv

0 0 0

0 0
√

5R
cv

0 0

0 0 0
√

5R
cv

0

0 0 0 0 1


,

one can notice thatEQE−1 is an antisymmetric matrix, whose real coefficients depend lin-
early onk1, k2, k3. Therefore,Q has purely imaginary eigenvalues and can be diagonalized
uniformly with respect to|k|, so that the conditions for a hyperbolic system are satisfied
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and the first order part of the problem is well posed. It is then well known that the addi-
tion of lower order terms still keeps the problem well posed; see again [18] for a detailed
presentation of these results.

The von Neumann stability analysis of the proposed scheme will now be carried out,
showing that linear stability always holds, independently of the timestep chosen. As a
consequence of the well posedness of the linearized initial value problem and of the Lax–
Richtmyer theorem, the numerical method is then convergent when applied to the constant
coefficient linear problem (21). The discretization of Eqs. (21) on a uniform and periodic
grid by the method of the previous section yields

πn+1
i, j,k + α

5R

cv

(
δxun+1+ δyv

n+1+ δzw
n+1
)

i, j,k1t

= (Lπ)ni, j,k − (1− α)
5R

cv
L
(
δxun + δyv

n + δzw
n
)

i, j,k
1t − L

(
wn d5

dz
1t

)
i, j,k

(22)

un+1
i+ 1

2 , j,k
+ αcp2δxπ

n+1
i+ 1

2 , j,k
1t = L(u− (1− α)cp2δxπ)

n
i+ 1

2 , j,k
1t (23)

vn+1
i, j+ 1

2 ,k
+ αcp2δyπ

n+1
i, j+ 1

2 ,k
1t = L(v − (1− α)cp2δyπ)

n
i, j+ 1

2 ,k
1t (24)

wn+1
i, j,k+ 1

2
+ αcp2δzπ̃

n+1
i, j,k+ 1

2
1t − α g

2
1tθn+1

i, j,k+ 1
2

=L
(
w + (1− α) g

2
θ1t − (1− α)cp2δzπ̃1t

)n

i, j,k+ 1
2

(25)

θn+1
i, j,k+ 1

2
+ αwn+1

i, j,k+ 1
2

d2

dz
1t = L

(
θ − (1− α)wd2

dz
1t

)n

i, j,k+ 1
2

. (26)

Here, Coriolis terms have been omitted for simplicity. If the discretization of the Coriolis
terms is performed by an operator splitting approach, in order to assure the von Neumann
stability of the complete scheme it is sufficient to prove it for (22)–(26). Let then the
Fourier basis be written as exp[I (ω1x+ω2y+ω3z))with I =√−1 and denote the Fourier
coefficients by ˆπn, ûn, v̂n, ŵn, θ̂n. Applying the above discrete equations to the Fourier
series representation of the solution of Eq. (21) yields then

π̂n+1 + 2α
5R

cv

[
ûn+1

1x
sin

(
ω11x

2

)
+ v̂

n+1

1y
sin

(
ω21y

2

)
+ ŵ

n+1

1z
sin

(
ω31z

2

)]
I1t

= F

{
π̂n − 2(1− α)I

[
ûn

1x
sin

(
ω11x

2

)
+ v̂n

1y
sin

(
ω21y

2

)
+ ŵ

n

1z
sin

(
ω31z

2

)]
1t − ŵn d5

dz
1t

}
(27)

ûn+1+ 2αcp2
π̂n+1

1x
sin

(
ω11x

2

)
I1t = F

[
ûn − 2(1− α)cp2

π̂n

1x
sin

(
ω11x

2

)
I1t

]
(28)

v̂n+1+ 2αcp2
π̂n+1

1y
sin

(
ω21y

2

)
I1t = F

[
v̂n − 2(1− α)cp2

π̂n

1y
sin

(
ω21y

2

)
I1t

]
(29)
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ŵn+1+ 2αcp2
π̂n+1

1z
sin

(
ω31z

2

)
I1t − αg

2
θ̂n+11t

= F

[
ŵn − 2(1− α)cp2

π̂n

1z
sin

(
ω31z

2

)
I1t + (1− α)g

2
θ̂n1t

]
(30)

θ̂n+1+ αd2

dz
ŵn+11t = F

(
θ̂n − (1− α)d2

dz
ŵn1t

)
, (31)

where F is now the amplification factor of the interpolation operator at the foot of the
characteristics. Equations (27)–(31) can be written in matrix notation as

Aûn+1 = Bûn + Cûn1t,

where the matricesA, B, C, u are defined as

A = I + α1tM , B = F(I − (1− α)1tM)

C =


0 0 0 −F d5

dz 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , ûn =


π̂n

ûn

v̂n

ŵn

θ̂n

 ,

andM is given by

0 2 5R
cv1x sin

(
ω11x

2

)
I 2 5R

cv1y sin
(
ω21y

2

)
I 2 5R

cv1z sin
(
ω31z

2

)
I 0

2cp2

1x sin
(
ω11x

2

)
I 0 0 0 0

2cp2

1y sin
(
ω21y

2

)
I 0 0 0 0

2cp2

1z sin
(
ω31z

2

)
I 0 0 0 − g

2

0 0 0 d2
dz 0


.

The amplification matrix for the scheme in Eqs. (22)–(26) is then given by

A−1B+ A−1C1t.

Introduce now the diagonal matrix

E =



√
cp2 0 0 0 0

0
√

5R
cv

0 0 0

0 0
√

5R
cv

0 0

0 0 0
√

5R
cv

0

0 0 0 0 I
√

5R
cv

2
g

/
d2
dz
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and notice thatEME−1 is an antisymmetric matrix, which is then diagonalizable and has
purely imaginary eigenvalues. Therefore,M can be diagonalized by some invertible matrix
T and will also have purely imaginary eigenvalues. Furthermore, it is easy to see that also
A, B will be diagonalized byT. Denoting withIµ the generic eigenvalue ofM , whereµ is
a real number, it follows then that eigenvaluesλ of A must satisfy

λ = 1+ I αµ1t,

so that|λ| ≥1 and‖A−1‖≤1 uniformly in ω, where now‖ ·‖ denotes the matrix norm
subordinate to the euclidean vector norm, which coincides with the spectral radius for
normal matrices, such asA, B, andA−1 are. This implies that

‖A−1C‖ ≤
∣∣∣∣d5dz

∣∣∣∣ (32)

uniformly inω, so that by standard results in the stability theory of finite difference schemes
(see, e.g., [40]) a necessary and sufficient condition for stability is given by

‖A−1B‖ ≤ 1.

This is equivalent to proving that the solutions of

det(B− λA) = det(TBT−1− λTAT −1) = 0

belong to the unit circle. Since the above equation factorizes, it follows that the eigenvalues
λ of A−1B must satisfy

λ = F
1− (1− α)µ1t I

1+ αµ1t I
.

It is then straightforward to prove that forα≥ 1
2∣∣∣∣1− (1− α)µ1t I

1+ αµ1t I

∣∣∣∣ ≤ 1

uniformly in ω. Since it can be shown that for all mostly used interpolation schemes the
amplification factor|F | ≤1 for all ω (see, e.g., [21]), the desired stability result follows,
independently of the order of the interpolation.
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