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A semi-implicit, semi-lagrangian algorithm suitable for the simulation of the dry,
adiabatic, nonhydrostatic atmospheric dynamics is introduced and analysed. Height
is used as vertical coordinate, without the customary terrain following normalization,
thus resulting in a stable, robust, and efficient numerical scheme which allows for
applications to mesoscale flows over complex orography. Results of simulations in
typical lee waves test cases are presented, which show good agreement with the
corresponding analytical solutions.g 2000 Academic Press
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1. INTRODUCTION

The high resolution simulation of atmospheric flows over complex orography po
many difficult numerical problems. Mesoscale and cloud scale simulations require the
of nonhydrostatic equations, so that sound waves must be either filtered by the ane
approximation or dealt with numerically, for example, by semi-implicit or split-explic
methods (see, e.g., [9, 16]). Both these approaches have their respective shortcor
those of semi-implicit methods being mainly connected to the complex structure of the th
dimensional Helmholtz equations to be solved at each timestep; see, e.g., the discuss
[35]. The choice of model equations which effectively select a particular spatial scale sh
then be avoided, if the aim of a consistent use of the same model from the synoptic scale
to smaller scales is to be pursued (see [42] and the models presented in [37]). An acc
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description of the lower boundary is obviously necessary, but the use of customary te
following vertical coordinate systems may induce large truncation errors (see, e.g., |
and create conditioning problems for semi-implicit methods around very steep orogra
A further requirement is that of a straightforward and efficient implementation on massi
parallel computers, one of the main computational tools available both for operational
research purposes.

In this paper, a numerical scheme for the equations of a dry, adiabatic, nonhydros
atmosphere is presented, which aims at providing a possible solution to some of t
problems by an appropriate choice of the vertical coordinate and of the lower boun
discretization. The nonhydrostatic equations are considered in advection form and the b
above mean sea level,is used as the vertical coordinate, without employing the custom:
terrain following normalization. The lower boundary is discretized by an approach wt
has been quite successful in estuarine modelling (see, e.g., [5-7]) and which yielc
accurate representation of the lower boundary without any complication of the dynan
equations because of metric terms. All the computational cells in the present discretiz
are rectangular boxes. The thickness of the bottom cells is allowed to vary and may as
any nonnegative value. The orographic heights are assigned at the cell sides, and the pc
different values at each side of the cell are taken into account in a finite volume discretiz:
of the pressure equation. Exact boundary conditions can then be imposed on the prog
variables in a simple way. In the context of the analysis of boundary discretizations of
the present approach is somewhere in betweepahtial stepapproach and thegiecewise
slope representatiorThe computational cells are not intersected by the slopes, as it wo
happen in models with a full finite volume discretization. On the other hand, although
orographic profile is approximated by a step mountain, piecewise linear slopes are imp
taken into account in the finite volume discretization of the pressure equation. Itis also
remarked that the present treatment of the lower boundary has nothing in common wit
step-mountain coordinaggoposed by Mesinger (see, e.g., [22]), which employs a press
based vertical coordinate.

A two timestep, semi-implicit, semi-lagrangian time discretization is then introduc
For the implicit part, a weakly nonlinear algebraic system is obtained, which is symme
and well conditioned. A fixed point iteration procedure is proven to converge to the disc
solution at each timestep under suitable assumptions. Simple and efficient solvers c
applied for the iterative solution, such as the preconditioned conjugate gradient mef
thus reducing one of the heaviest computational tasks. The von Neumann stability ane
yields unconditional stability for the proposed method.

Since the proposed scheme is expected to be especially appropriate for simulati
mesoscale flows, various numerical tests have been carried out in the case of two-dimen
stratified flows over idealized mountains and development of thermals. The results obtc
are in good agreement with the corresponding analytical solutions or asymptotic expans
provided that the lower boundary is sufficiently well approximated by the computatio
grid, which is shown to happen at grid spacings that are realistic for high resolution moc
Furthermore, one or two nonlinear iterations are usually sufficient to reach convergen
each timestep, thus showing that there is no loss in efficiency due to the solution o
nonlinear system.

The semi-implicit time discretization of the Euler equations has been used in atmospl
modelling in [9, 43]. The application of semi-lagrangian techniques to mesoscale sim
tions has been questioned (see, e.g., [2]), but various such models exist and othe
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currently being developed (see, e.g., [10, 28, 32, 33, 42]). As remarked in [11], in s
of the problems at horizontal Courant numbers larger than one when dealing with sta
ary solutions, timesteps three to six times larger than those of typical Eulerian sche
are still allowed by the semi-lagrangian approach. Furthermore, the use of cells witt
bitrary thickness for the vertical discretization implies that high vertical Courant numb
can easily arise, so that the semi-lagrangian approach is a quite convenient choice
fully multidimensional discretization of the advection terms. It is however to be remar}
that the semi-implicit discretization proposed in this paper is independent of the ch
of the advection scheme, so that, for example, the good properties of the algebraic
tem obtained still hold if an Eulerian scheme is used for advection. A numerical sche
using the proposed lower boundary discretization coupled to a split-explicit time discret
tion and Eulerian advection is currently been investigated by J. Steppeler of the Deuts
Wetterdienst and a similar approach has also been used in a mesoscale model develo
G. Tripoli at University of Wisconsin (see [38, 45]).

The greatest inconvenience of the non-normalized vertical coordmiatevell known
to be the practical difficulty to obtain a uniform resolution close to the Earth’s surfa
Due to the limitations of previously available hardware, this leads to an almost unive
use of terrain following coordinates both for synoptic and mesoscale models. However
use of properly stretched vertical discretization grids allows us to reach uniform resolu
below a given reference height and to enlarge progressively the discretization step aba
the main contribution to the global boundary fluxes is due to terrain below some refere
height, as it can be assumed, for example, in a mesoscale model when no large pla
are present, a fine vertical resolution can be maintained in this way in most of the boun
layer. At the same time, all the necessary upper grid layers can be included with lim
computational overhead.

2. THE NONHYDROSTATIC MODEL EQUATIONS

The Reynolds averaged equations for a dry, fully compressible atmosphere can be w
in advection form as

dlogp
V.v=0
at
dv+Fv— cpdVr k + Av+8 ov 1)
dt - P gK+u az\ "oz
9 o+ (%) 1
at ~ 4 0z\ "oz 0

Here, Cartesiarnx, y, z) coordinates have been used, the velocity field is givew by
(u, v, w), k=(0, 0, 1) denotes the vertical direction, and

d 0
—=—4V.V 2
at ot ' @
is the Lagrangian derivative. Furthermotewill denote the Exner pressure function,is
the absolute temperatuyeis the densityR is the ideal gas constaut,, c, are, respectively,
the constant pressure and constant volume specific heats of dry aip, & d reference
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pressure value. The thermodynamic variables for an ideal gas can then be defined as

p\* T Porr R R 1 c,
O L k== 2128 @3
d (po> T P Reé “ Cp K R ®)

The turbulent viscosity coefficienis, v are assumed to be known nonnegative functiot
of the flow field and thermodynamic variables. The Coriolis acceleration coefficients
assumed to be constant and are written in matrix form as

0 —f O
F=|f 0 O
0O 0 O
Since
logp = %Iogn —logé + log %
Egs. (1) can then be rewritten as
dlogr R R dlogé
—V.v= —
dt + C, c, dt
dv 0 v
— +Fv=—c,9Vr — gk Av+ —[v— 4
dt+ v CofVm — gk + 1 V+8Z<U8Z> (4)
d AO + o (,2 +Q
— = —|lv— .
at M dz\ 0z ¢

The numerical scheme presented in this paper only deals with the inviscid and adia
case. Therefore, turbulent viscosities and diabatic heating will be omitted in what follo
Reference profiles of Exner pressiite= I1(z) and potential temperatuf@ = © (z) which

are assumed to represent a stably stratified, hydrostatic atmosphere are then introduc

convenience, so that=TI1+ 7, %‘Z) >0, and

dr

9%, =

-g. )

6 willdenote from now on the deviation from the profile thus yielding the model equations

dlog(IT + 7 R
dlog +#) | R

V.v=0 6
dt (o v ©)
dv -
at +FV=—C(®+)V(II+m)— gk @)
de de

In order to avoid cancellation of almost equal terms, the equation for the vertical velo
is then rewritten as

9)
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It should be noticed that, although it is in fact possible to linearize Eq. (6) around
reference pressure profile, so as to obtain a linear equation, fihre"nonlinear equation
is retained here. In this way, the resulting model is much less dependent on the refel
profile chosen. Furthermore, in the context of a semi-implicit discretization approach,
term wd'g—g” which arises in the linearization would yield a further, undesired couplir
between the pressure and vertical velocity equations.

The formulation of appropriate boundary conditions for atmospheric models is a wic
debated problem for which only partial solutions exist (see, e.g., [15, 27, 30, 37]).
the purposes of the present implementation, an absorbing layer (see [28] for a det
description) will be employed at the upper and lateral boundaries in order to avoid reflec
of outgoing waves. For the elliptic equation which the semi-implicit discretization will yie
for the nonhydrostatic pressute & Neumann boundary condition will be imposed. At th
lower boundary, the velocity component normal to the boundary is taken to be zero, a
Neumann condition of zero flux will be imposed for all other variables. As it will be cle
in the following section, the proposed boundary discretization results in a step mour
approximation of the orographic profile, so that the velocity component normal to
boundary coincides with either, v, or w.

3. COMPUTATIONAL DOMAIN AND GRID ARRANGEMENT

The equations are considered on the domain
D= {(Xs y! Z) : (Xv Y) € [07 LX] X [Ov Ly]1 h(Xv y) =z= LZ}a

whereh is some representation of the orographic profile. A staggered discretization grid \
at mostNy x Ny x N, computational cells is introduced. The horizontal grid spacings &
assumed to be constant for simplicity and are definetbas- Ly /Ny, Ay=Ly/Ny. How-
ever, the model has also been implemented on stretched horizontal grids without subst
modification of the discretization approach. Let tiign,,» denote the height above mear
sea level of the lower face of cédlandz, the height above mean sea level of the center of ce
k,fork=1,..., N,+1. The vertical grid spacings are defined 8%« = Zx 1/ — Z_1/2,
fork=1,..., N,.

Only the cells above the Earth’s surface belong to the effective computational donr
Bottom cells are denoted for eachj by the indexek =m; ;. Specifically,

m i = min{kh ;<% .
i ] 1§ng2{ i\ k+§}

Dependency of such indexes onj is often omitted for clarity in what follows. Fur-
thermore, heights of the cell faces above orography are introduced fori epeimd for

k=m;j, ..., N;. These will in general depend onj, k and can be defined as
max(Z, 1 —hi;1;,0)  fork=miqjandk =m;
AZ 1., = ’
Atk AZ 1= AZy otherwise

AZi,j,k = maX(AZH_%,j‘k, AZi_%'j,k, AZLH_%'k, AZi'j_%‘k).

Top and bottom cells will be assumed of rectangular shape with horizontal dimens
Ax, Ay and vertical dimensionz ; . Each cell is numbered at its center with indicep,
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FIG. 1. \Vertical section of the computational grid.

andk. The discretei velocity is defined at half integérand integerg andk; v is defined
at integers, k, and half integelj ; while w, 8, and® are defined at integersj, and half
integersk. Orography profile heights are defined bothuandv locations. Finally;r and
all other three-dimensional scalar variables are defined at integets At points where
they are not defined, the discrete variables are generally computed by simple arithm
mean of the nearest defined values.

An example of the vertical section of such a computational grid is shown in Fig.
together with the corresponding idealized orography profile. It can be observed that
example,Azy11/2 4, AZz1/24 take different values, as well a8zay1/2 4, AZsy1/2 4, and
AZ3i1/22, AZat1/2 2, respectively. Furthermoréyzz 4 = Azo 1/ 4, aNdAZ4 4 = AZay1/2 4.
Vertical walls are taken into account by assuming the corresporiiing » j « to be zero.
For example, in the grid shown in Fig. Nzs 12> =0, as well asAzzy1/23, AZoy1/22,
andAzy4/5 3. Furthermore, the small black squares denote gridpoints where the boun
conditionw =0 is imposed, while the small white squares denote gridpoints where
boundary conditiomu =0 is imposed. The grid which is built in this way is different fron
those of the so-calleshaved celbpproaches (see, e.g., [1]), since the orographic profile
in fact approximated by a step mountain. However, sufficient accuracy will be achieve
the finite volume discretization of Eq. (6). Such discretization is performed by assun
no contribution to the flux of the areas below orography on each face, thus accountin
the different heights at the cell faces. It is also to be remarked that in this discretize
of the lower boundary, velocity components normal to the boundary coincide with eit
u, v, or w values, so that imposing the appropriate boundary condition on velocity is ra
straightforward. Difference operators are then introduced as

5 _ Pitrjk—Bijk 5 Pk —Bijk
e VL U U W
®ijk+1— Pijk
S2bijkrt ="

AZ ki
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for variables defined at the cell centers and as

birijk—Pi-1jk Bijrik— P Lk

i jk = AX , yOi.jk = Ay

Pi kst = Pijk-1

8201, jk = AZx

for variables defined at the cell sides. A discrete divergence operator is also defined a

1 [AZygjiUist jk—AZ_1jiUi-L j«
AZ AX
AZi’j+%’kUi,j+%’k AZI - i kvl - l k
Ay

dW(U,U,uOij =

T Wi jkl — Wijk-1]-

4. A SEMI-IMPLICIT AND SEMI-LAGRANGIAN SOLUTION ALGORITHM

A semi-implicit, semi-lagrangian discretization scheme is now introduced. In ordel
obtain a scheme whose stability is independent of the sound wave speed, the gradi
the Exner pressure function in the momentum equations and the velocity divergenc
the continuity equation are discretized implicitly in time. A coupling is also to be mai
tained between the buoyancy term in ihequation and the vertical advection term in the
equation fom. Furthermore, for simplification of the resulting algebraic system, the ter
Cpf O, pez—’; in the horizontal momentum equations and the te[,m% in the vertical
momentum equation are discretized explicitly in time (see also [9, 10, 28, 42]). This re
on the implicit assumption thatis not too large with respect ¥©, somewhat in the spirit
of the classical Boussinesq approximation, so that no severe stability restrictions or
discretization timestep result. The discretization of Eqgs. (6)—(9) at the internal nodes is
given by

~n+1
R ..
|Og <1+ ij, k) + ac_ dIV(Un+1, Un+17 wn+1)i,j,kAt — (gn)ﬂjqk (10)
T v
un+l +acp®ksxﬁ”+l = (GU 4| (11)
1 ~n+1
v:}l%’k + osz@kByni'jJt%’kAt = (gv)i”!H%’k (12)
9n+1
n+1 ijk+3
i,j,k+% — gOl k+12 At + (XCp®k+1827TI i, k+1At (gw)l i, k+ (13)
2
de
n+1 whtl n
9I]k+1 +(XE e |Jk+1At (ge)i,j,k-',-%’ (14)
2

where the right hand side terms are defined, respectively, as

1-ao)R

QU3 | = LU — (1— 0)CrO8F At — CpfidF ALY
L,

i,+3.j.k
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GO} 1 = L0 = (1 - )CpO8,F AL — CoI8, FAD]|

9 n
Gw),, = w— (1 —a)Cpy®8,m At — Cpfd,m At + g(1 — ) — At
ijk+3 P P © ikl
> Kt3

N de :
(ge)i.j,k-s-% = ﬁ(@ -(1- Ot)dzwAt)i’j‘H;
It is to be remarked that, due to the definition of the pressure values at the center of
computational cell, the approximation of the horizontal pressure gradients is generally
first order accurate in the bottom cells whire m; ;. Here the symbol denotes the inter-
polation at the departure point of the lagrangian trajectory endifigAr, j Ay, kAz) at
time (n+ 1) At (see, e.g., [36]). As itis easily seen, afirst order average along the trajec
has been employed for the semi-lagrangian time discretization, where one must re
aeE [%, 1] for stability. Higher order averages could also be considered (see, e.g., [31]
the present implementation, bicubic Lagrange interpolation has been used at the traje
departure point. In the three lowermost cells above orography, bilinear interpolation is u
The trajectories are computed by an explicit second order Runge—Kutta method, whi
applied to each trajectory with a timestep that is an appropriate fractiext afepend-
ing on the local Courant number, so as to avoid crossing of the computed character
(this substepping algorithm is described in detail in [3, 7]). In the trajectory computati
wind components are extrapolated at time % As a result of the substepping algorithnr
employed, all the trajectory departure points lie in the computational domain.

Furthermore, the discretization of the Coriolis terms has been omitted here for sim,
ity of the presentation. They can be easily included by a semi-implicit operator splitt
approach, which, although inadequate for synoptic scale applications (see, e.g., [44
sufficiently accurate for simulation of mesoscale flows. It is then to be remarked tha
the finite volume discretization of Eq. (6) given by Eq. (10), the normal velocity on t
areas of each face below orography has been taken to be zero, thus accounting f
varying orographic height at the cells faces. As a result of the orography approxima
the normal derivatives at the boundary coincide with the derivatives with respgct/to
andz, respectively. Therefore, imposing zero flux boundary conditions and® is quite
straightforward, as well as imposing the free slip boundary condition on the stagg:
velocity components.

Substitution of Eq. (14) into Eq. (13) is now performed, to obtain

1 ~n+l
wierjfk+§ = Ak%(gw)i”,j’k% — anAk+%(~)k+%82nii‘;fk+%At, (15)
where
-1
2412
a“At-dO
Acr=|1+g9 —
2 ®k+% dZ k+l

and whergGw); «;1/» has now been redefined as

9 n
Gu)" =L w— (1= a)co®8,7 At — Cp88,7 At + (L — a)— At
ikt P P © /i ikt
1 K+3
g

+ o
O+

(GO 1 AL.



194 LUCA BONAVENTURA

Substitution of the discrete Eqgs. (11), (12), and (13) into Eq. (10) yields then
e cp
], ~ ~ ~
Iog(l—i— H—L) —a? c div(©87 ", @87, ABS, M), k=¥ (16)

where

Wlae= GOk~ L (GV)", AGuM)i kAL

For each, j, k, EQ. (16) can be rewritten as

~n+&
Az clog( 1+ Jidk
i,k g( + M )

n n n n n n ~n+1
S R R s (SO s (TR U L c ST v O EL
3] 3] J+3 =3 j.k=3

1,].k+3
~n +1 ~n +1 n ~n +1 n ~n +1
a1+]kl+llk alljklllk i3 Tk T 01 T Lk
n ~n+1 n ~n+1
_qﬁj,k.‘.%”i,j,k-kl G ik 17 k-1 = = Az,j k¥ jko 17
where
n ,CpRAL? 6
ai+%,j,k_a c, AX2 |+ koK
cpRAL?

n . 2%p

bi,j+%,k =«a CoAY2 AZ 7y 1Ok

o , CpRAt?

1 =0 — 10, 1.
R CAZ ey T

After the solution of the nonlinear system given by (17), the values of the velocities at t
n+ 1 are updated with the implicit corrections to the pressure gradient, and the valu
potential temperature at tinre+ 1 is computed by Eq. (14).

Fori=1,...,Ny, j=1,..., Ny, andk=m; j,..., N, Egs. (17) constitute a weakly
nonlinear system of at most, x Ny x N, equations. As a consequence of the choic
of the vertical coordinate and of keeping the pressure equation in nonlinear form, tl
linear part of this system is given by a seven-diagonal, symmetric, and positive defi
matrix, so that its solution can be computed, for example, by fixed point iteration ba
on the repeated application of the conjugate gradient method with simple preconditior
It can be checked directly that arbitrarily complex orography and flow fields do not aff
the good conditioning of the system. Since it can be shown in several test cases th
more than two nonlinear iterations are usually needed, a gain in efficiency is expected
respect to methods which require the solution of nonsymmetric systems. Furthermore
simplification of the matrix structure is also expected to yield a greater efficiency of pare
implementations, by a diminished need for communication among processors.
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5. CONVERGENCE OF THE NONLINEAR ITERATIONS

The numerical scheme introduced in the previous sections requires the solution o
large weakly nonlinear system (17) at each timestep. In order to solve efficiently su
system, it is convenient to define

AZjk
Iy

dil?i,kz +ai+21k+ai Jk+blj+ k+bin, 1k+cljk+1+cjk——

~n+i. ﬁl’hLI:l.
tastatid) = sz oo 14 TE) - T}

so that Eq. (17) can be rewritten as

and

- ~n+1 n ~n+l n ~n+1 n ~n+1
f|,J,k( Ijk)+dljk i,k — aH_ Lk I+ljk ai_%,j’kni—l,jk |J+ K |]+1k
n ~n+1 ~n+1 - n
—-b k F=Te Gk d i jk1 — ik k-1 = A4V e (18)

wherei =1,..., Ny, j=1,..., Ny,k=m; j, ..., M ;. Equations (18) constitute a non-
linear system of the form

f(x) + Ax = b, (19)
whereA is a seven-diagonal, symmetric, diagonally dominant matrix which can then

easily shown by the Gershgorin theorem (see, e.g., [39]) to be positive ddfiritee here
vectors inRMN>NyxNz The fixed point iterations defined by

x? = initial guess obtained.g., from #"

20
AXk+l — b _ f(Xk) ( )

are easily proven to converge to the solution of (19), provided that

IA—

where| - || denotes the matrix norm subordinate to the euclidean vector norm. The m:
valued functiorH = g—)f( is diagonal and is given componentwise by
AZjk  Thjk

M M+ 7k

hi j k(i) = —

It can then be checked directly that, for convergence to be assured, it is sufficient
Mk < Az jx and|7; | < TIk/2. Considering that the nonhydrostatic correction is usua
much smaller in value than the reference hydrostatic profile, and that the Exner press
usually normalized assumingg = 10° Pa, this means that allowing a minimuxz; j x =2m

will be sufficient to ensure convergence in realistic applications to large scale flows. O
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iteration procedures could be considered, such as the generalized Newton method, po
leading to improved performance. However, it is to be remarked that in several test ca
single fixed point iteration is sufficient for each timestep. At each iteration, the linear sys
in (20) is to be solved, for example, by some number of preconditioned conjugate grac
iterations. Application of block tridiagonal preconditioning based on the discretization of
vertical derivatives terms, as suggested in [13, 14], yields a quite efficient solution algorit
Furthermore, the tolerance used in the stopping criterion for the conjugate gradiel
rescaled with the norm of the right hand side of the linear system (see, e.g., [29]). /
result, in several test cases as little as five iterations are required by the preconditi
conjugate gradient method.

6. NUMERICAL RESULTS FOR TWO-DIMENSIONAL FLOWS OVER OROGRAPHY

Equations (6)—(9) constitute in principle a complete model of the dry, inviscid, adiab:
atmospheric dynamics on all physical scales. However, the proposed discretization sc
is expectedtoyield the greatest advantages and to display maximum efficiency for mesa
simulations. For this reason, the scheme has been tested on several cases of two-dimel
flows over orography, in order to compare the results with known analytical solution:s
their asymptotic expansions (see, e.g., [19, 23-26] and references therein). An isothe
atmosphere witi =273 K has generally been assumed, sothat0.0187 s'*. Reference
potential temperature is computed accordingly and the reference pressure profile is obt
from the discrete hydrostatic equation. The full nonlinear model was used in all the t
carried out. The time averaging paramatehas been given values in the range (0.5]
0.53). The tolerance parameters were set=atl0~’ for the fixed point iterations to solve
the nonlinear system and at= 108 for the linear conjugate gradient iterations, but th
tolerance for the conjugate gradient has always been rescaled with the norm of the
hand side as previously remarked.

As a preliminary test, the model has been run with zero initial velocities, presst
and potential temperature perturbations over various steep orographic profiles, suct
10,000-m high rectangular mountain. Various cell aspect ratios and reference temper
profiles were used. In all cases, no generation of spurious flows due to the presence of
slopes has been observed.

Several standard tests have then been performed withsiera of Agnesi mountain
profile given by

o <x<Ll,

"= T e 05

wherehg, aare the maximum height and half-width of the mountain, respectively. The pro
is centered at a poingy and L is the width of the computational domain. In all the test
Xo = % The parameter values used are the same as for the tests presented in [28] for at
semi-implicit and semi-lagrangian model also based on the fully compressible equati
The reference horizontal Courant number is usually taken to be approximately 0.5. I

2The straightforward translation of this old Italian wordfémale devilor witch. However, it is quite sure
that early investigators of this curve such as Grandi and Agnesi used the word as a technical one, related
geometric properties of the curve, see, e.g., [20, 26].
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2.0x10* T T T

N 1.0x10%]

0.0x10°_ :
3.5%10° 4.0x10°

1
5.0x10° 5.5%10°
X

FIG. 2. Horizontal velocity in a linear hydrostatic stationary lee wave test case.

the tests, the orographic profile was inserted abruptly in the horizontally homogeneous
at initial time.

A stationary test in the linear hydrostatic regime has been performed, i.e.,%?(/ith
much smaller than 1. More precisely, the model has been runawitii6 km,ho=1 m,
at the resolutiomx =3 km, Az=250 m. An initial horizontal velocityJ =32 m/s was
prescribed. The horizontal velocity and the vertical velocity obtained at the rescaled
t* = % =80 with At =40 s are plotted in Figs. 2, 3. The corresponding vertical momentt

2.0x10™*

N 1.0x10%

O'Oxloo_ S S : ;
3.5x10° 4.0x10° 5.0x10° 5.5%10°

FIG. 3. \Vertical velocity in a linear hydrostatic stationary lee wave test case.
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24x10% . .

2.0x10% -

1.0x10* .

0.0x10° r r
0.0x10° 1.0x10°
Normalized momentum flux

FIG. 4. Normalized vertical momentum flux in a linear hydrostatic stationary lee wave test case.

flux, normalized by its analytic value, is plotted in Fig. 4. It can be observed that the rest
quite close to 1 throughout the undamped region below 10 km. A stationary testin the li
nonhydrostatic regime, i.e., witﬂi’ijE of the order of 1, has been run wigh=500 m,hg =
100 m, at the resolutiomx =100 m, Az=250 m. An initial horizontal velocityJ =
14 m/s was prescribed. The vertical velocity obtained at the rescaled*thaﬂég =120
with At =4 s is plotted in Fig. 5. The corresponding vertical momentum flux, normaliz
by the analytic linear hydrostatic value, is plotted in Fig. 6. It can be observed that
computed value is approximately 0.28, which can be compared with the analytic estir
of 0.3 for the nonhydrostatic case (see the references in [28]).

The linear time-dependent test case proposed in [34] was also performed. A pote
temperature perturbation was placedat 150 km in a 400 km wide and 12 km high box
without orography. An initial horizontal velocity = 20 m/s was prescribed, and the spatic
resolution used waax = Az=1 km. The contours of potential temperature perturbatior
at timet = 3000 s are shown in Fig. 7 and compare well with the structure displayed by
analytical solution. In this transient case, no more than 6 conjugate gradient iteration:
timestep were necessary.

Anonlinear, hydrostatic stationary test has then been run assarmsidg km,hg =800 m,
at the resolutiomx = 2.8 km, Az=200 m and initial horizontal velocity =32 m/s. For
this test case, temperature has been chosen sdtead.02 s ™. The horizontal velocity,
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FIG. 5. Vertical velocity in a linear nonhydrostatic stationary lee wave test case.
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FIG. 6. Normalized vertical momentum flux in a linear nonhydrostatic stationary lee wave test case.
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FIG. 7. Potential temperature perturbations in a linear nonhydrostatic time-dependent test case.

vertical velocity, and potential temperature contours obtained at the rescaled &n’{g =

172 with At =30 s are plotted in Figs. 8-10. It can be observed that the results agree
with those of [28]. The final steady state is reached quite slowly, but convergence tc
analytical value of about 1.1 is clearly displayed in Fig. 11 (see again the reference
[28]). A plot of the velocity field in this test case is also given in Fig. 12. In this type of plc
the vertical velocity component is rescaled and for each cell the velocity components |
been interpolated linearly at the cell center. In order to show that the method also perft

2.0x10* T

ooxtotd ,
6.5x10° 7.0x10°

1 ¥
8.0x10° 9.0x10° 9.5%10°

X

FIG. 8. Horizontal velocity in a nonlinear hydrostatic stationary lee wave test case.
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FIG. 9. \Vertical velocity in a nonlinear hydrostatic stationary lee wave test case.

well when the mountain intersects a larger number of grid levels, a similar plot is show
Fig. 13 for the same test case at the vertical resolution of 60 m.

Several nonlinear, nonhydrostatic regime stationary test cases have been run. In
tests, enough resolution had to be employed in order to reproduce steep orography pl
in a sufficiently accurate way on the computational grid described in Section 3. Otherv
the approximated orography is too coarse and the computed flow stagnates or recirc
downsteam of the mountain where high vertical walls are present. Since the pressure gr:

2.0x10%

w LOXI0%

ooxice] . . o =
6.5x10% 7.0x10° 8.0x10° 9.0x10° 1.0x10°®

FIG. 10. Potential temperature in a linear hydrostatic lee wave test case.
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FIG. 11. Normalized vertical momentum flux profile in a nonlinear hydrostatic stationary lee wave test ca
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FIG. 13. \elocity field in a nonlinear hydrostatic lee wave test case run at vertical resolvien60 m.

terms are only first order accurate at the lowest model level, sufficient resolution is

necessary in order to keep this discretization error small. However, as it will be seen
grid spacings required to obtain accurate results throughout the computational domai
realistic for high resolution simulations. Furthermore, even in the case of a coarse mou
description, the flow is always computed correctly above the top of the mountain.

A first test was performed with an Agnesi profile assuméng 1000 m,hg =900 m,
so that the aspect rati@ =0.9, at the resolutiom\x =200 m, Az=100 m and initial
horizontal velocityy = 13.28 m/s. With these values of the parameters, the inverse Fro
number%1 is about its critical value. The potential temperature, horizontal velocity, a
vertical velocity contours obtained at tihe- 2400 s withAt =4 s are plotted in Figs. 14—
16. It can be observed that the steep wave pattern downstream of the obstacle is

LOOX 10 T T .

0.00x10%

.
5.0x10* 6.0x10* 7.0x10*

FIG. 14. Potential temperature in a nonlinear nonhydrostatic lee wave test case.
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FIG. 15. Horizontal velocity in a nonlinear nonhydrostatic lee wave test case.

reproduced (see, e.g., the analytical solution presented in [24] for a similar case) anc
the flow accelerates down the slope as expected. A plot of the typical velocity field in
test case is also given in Figs. 17 and 18 at various resolutions.

In order to test the performance of the model with even steeper orography, the sam
was repeated with a 900-m high and 200-m wide rectangular mountain placed4t km
atthe resolutiom\x = 300 m,Az= 100 m. The potential temperature contours and veloci
field obtained at timé= 2500 s withAt = 5 s are plotted in Figs. 19—20. Itis to be remarke

1.0x10%

0.0x10% .
4.8x10%  5.0x10* 6.0x10*

FIG. 16. Vertical velocity in a nonlinear nonhydrostatic lee wave test case.
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FIG. 17. Velocity field in a nonlinear nonhydrostatic lee wave test case run at resolvtiea Az=200 m.

that the time step employed is 5 times that used in [28] in a similar steep orography
of the MC2 model. Furthermore, convergence of the iterative solver at each timestep
obtained with the same computational effort as in the case with smooth orography (no |
than two nonlinear iterations which needed on average a total of about 10 preconditi
conjugate gradient iterations).

Finally, a nonlinear, nonhydrostatic time-dependent test was also run. The develop
of a warm bubble placed in an isentropic atmosphere at rest was studied, with pararr
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FIG. 18. \elocity field in a nonlinear nonhydrostatic lee wave test case run at resoliatica 150 m,
Az=80m.
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FIG. 19. Potential temperature in a flow over a thin rectangular obstacle.

analogous to those used in [8]. The potential temperature perturbation obtained attime
with At =0.25 s and a resolution ckx = Az=20 m is shown in Fig. 21. No analytical
solution is available in this case, but the computed results agree well with the correspor
reference numerical solution presented in [8].

In all the tests, numerical results are in good agreement with the analytical or appr
mated solutions available, provided that the computational grid approximates the moul
slope sufficiently well. This is shown to be the case for grid spacings that are realistic
high resolution simulations. Furthermore, the efficiency of the proposed method has |
demonstrated, since all the main features of dry mountain wave dynamics have bee
produced at reduced computational cost and without any restriction on the steepness
orography involved.
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FIG. 21. Potential temperature perturbations in a nonlinear nonhydrostatic time-dependent test case (
warm bubble in an isentropic atmosphere).

7. CONCLUSIONS

A semi-implicit, semi-lagrangian scheme for the fully elastic, nonhydrostatic equati
of atmospheric motion has been developed, using a Cartesian coordinate system with |
as the vertical coordinate. No terrain following normalization was employed. As a resu
numerical algorithm is obtained, which only requires the solution of a symmetric and v
conditioned system at each timestep. Furthermore, no spurious flows are generated &
steep orography. Numerical simulations of well known lee wave test cases demonstra
efficiency, robustness, and accuracy of the proposed scheme for high resolution mest
simulations. Further research work is in progress to perform three-dimensional idea
test cases and to extend the same discretization approach to viscous, moist, and di
dynamics.

APPENDIX: WELL POSEDNESS AND STABILITY ANALYSIS

The linearization of Egs. (6)—(8) around an hydrostatic and stably stratified profile ¢
stitutes a well posed initial value problem in the sense of Kreiss (see, e.g., [17, 18]).
well posedness analysis is presented here for completeness, since it has been dea
in the seminal paper [27] only in the context of the anelastic approximation. The stud
the proper initial and boundary value problem is of rather difficult formulation, theref
it will only be shown here that the appropriate frozen coefficient initial value problem
well posed. By the Lax—Richtmyer equivalence theorem, this will then imply converge
of any stable and consistent finite difference approximation of the corresponding lineatr
equations.

Consider then the linearization of Egs. (6)—(8) around a constant flow field of com
nentsU, V, and 0, respectively, and reference profiles of Exner predguaed potential
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temperature® satisfying% > 0 and the hydrostatic assumption (5). The correspondi
constant coefficients linear initial value problem can be obtained by compatingy and
their derivatives at some fixed value ofThis problem can be written in vector form as

au au au au
— +A—+B— +C— =Du, 21
ot + aX + ay + 0z (21)

where
u 28 o0 0 0 v o & oo
® U 0 0 0 0V 0 00
A=l 0o o0 U 0 0| B=|e 0 V 00
0O 0 OU O 0 0 0V O
O 0 0 O0U 0 0 0 0V
[0 0 41 0]
00 &R o dz -
00 0 O o 0 f 0 O u
C=|0 00 0 0, D=|0-f 0 0 0, u=][uv
c,® 00 0 O oooo% w
0
0 00 0 O de
0 0 0 -% o]

Equation (21) defines a well posed system whose first order part is hyperbolic (see,
[18, 40]). To show this, notice that the symbol of the first order operator appliadgo
given byQ(k) =i (k1A + k2B + k3C), that is,

kiU + koV IRk R IRk 0
cpOks kU + kpV 0 0 0
Q) =i | ¢c,0k 0 kiU + koV 0 0
CpOks 0 0 kiU + koV 0
0 0 0 0 kiU + koV

Introducing the diagonal matrix

® 0 0 0 O©
IR
0 R0 0 0
E=| O 0 R0 of,
InR
0 0 0 R0
| 0 0 0 0 1

one can notice th&QE~! is an antisymmetric matrix, whose real coefficients depend li
early onkg, k, k3. ThereforeQ has purely imaginary eigenvalues and can be diagonaliz
uniformly with respect tgk|, so that the conditions for a hyperbolic system are satisfit
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and the first order part of the problem is well posed. It is then well known that the ac
tion of lower order terms still keeps the problem well posed; see again [18] for a dete
presentation of these results.

The von Neumann stability analysis of the proposed scheme will now be carried
showing that linear stability always holds, independently of the timestep chosen. £
consequence of the well posedness of the linearized initial value problem and of the |
Richtmyer theorem, the numerical method is then convergent when applied to the con
coefficient linear problem (21). The discretization of Egs. (21) on a uniform and peric
grid by the method of the previous section yields

IR
e+ o= (8xu™t 4 80"t + SZw“H)i’j’kAt
v

MR dn
=(Lr)jx—L-a) c L(8xu" +8y0" +8,w"), | At — L(w”m> (22)
o ik

v dz
u[‘jl + acp®5xn”+l =Lu—(1- (x)CpO(Ser)IJr At (23)
I”J*j o Facp®ymlt = L(v — (1 - a)cp@8ym)! 1At (24)
Wi+l n+1 g n+1
w; ! —i—acp@(Sznl N k+1At —oz@Até‘I D!
g n
=L <w + (1—a)20At — (1 — a)cpOs,7 At) (25)
S} i,j.k+3
de de n
n+1 n+1 - _ _ -
8|Jk+1 —i—otwlijr 4z At = (9 1 ot)wd At)iijrl. (26)
»LRTZ

Here, Coriolis terms have been omitted for simplicity. If the discretization of the Coric
terms is performed by an operator splitting approach, in order to assure the von Neur
stability of the complete scheme it is sufficient to prove it for (22)—(26). Let then t
Fourier basis be written as exmﬁolx + wpy + w32)) with | = \/—1 and denote the Fourier
coefficients byz™, 0", 3", w", 6". Applying the above discrete equations to the Fourie
series representation of the solution of Eq. (21) yields then

HR 0n+l ) AX An+1 ) wo A ’\n+1 ) AZ
A4 2¢ [ sm<wl >+v sm( 2 y>+ sm(we’2 )] | At

C, | AX 2 Ay 2 Az
= F{ - 21—l [E sm<w12AX> + Z—;sin(wzﬁy)
+i;sin(a)32AzﬂAt - ZHAt} (@7)
o+t 4 2acp®ﬁ;1 sin<w12AX> |At = F [u 21— a)cp@l sm(w ZAX) | At]
(28)
oMt 4 20ccp(i)ﬁAn;r/l sin<w22Ay> IAt=F { -2(1- a)chA:/ S|n< ZAy) I At]

(29)
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~n+1 Az
@™ 4 200,07 sin( 221 at - Wgn+ing
Az 2 C]

—F {@” —21- a)cp@ﬁ— sin<w3AZ> Iat4 1299, At] (30)
Az ®

. de ~ de
9n+1+aaﬁ)n+lAt — F(en — (1_a)a l’l\}nAt), (31)

where F is now the amplification factor of the interpolation operator at the foot of
characteristics. Equations (27)—(31) can be written in matrix notation as

A0 = BO" + CO"At,
where the matriced, B, C, u are defined as

A=1+aAtM, B=F(—(1—a)AtM)
d
0 00 —Fd o

S

7
000 0 O 0"
C=looo0 o o, ="},
000 O O "
000 0 O "
andM is given by
r o) wp A w;
0 25ax SN 25y sin(5)1 25 sin(*59) 1 0
299 sin(20X) | 0 0 0 0
2% sin(#) | 0 0 0 0
®
2% sin(«22) | 0 0 0 -3
de
i 0 0 0 a0 0 |

The amplification matrix for the scheme in Egs. (22)—(26) is then given by
A~'B+A~ICAt.

Introduce now the diagonal matrix

O 0 0 0 0 ]
0 R0 0 0
E=| O 0 o8 o 0
0 0 0 IR 0
[0 0o o o /R
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and notice thaEME ~1 is an antisymmetric matrix, which is then diagonalizable and h
purely imaginary eigenvalues. Therefolk& can be diagonalized by some invertible matri;
T and will also have purely imaginary eigenvalues. Furthermore, it is easy to see that
A, B will be diagonalized byl'. Denoting withl i the generic eigenvalue M, wherepu is

a real number, it follows then that eigenvaluesf A must satisfy

A=14 lauAt,
so that|x| > 1 and||A~Y|| < 1 uniformly in w, where now] - || denotes the matrix norm

subordinate to the euclidean vector norm, which coincides with the spectral radius
normal matrices, such #s B, andA~! are. This implies that

JATIC|| < (32)

dj
dz

uniformly in w, so that by standard results in the stability theory of finite difference scher
(see, e.g., [40]) a necessary and sufficient condition for stability is given by

IA~'B| < 1.
This is equivalent to proving that the solutions of
detB — AA) = det(TBT 1 —ATAT H =0

belong to the unit circle. Since the above equation factorizes, it follows that the eigenve
X of A~1B must satisfy

1-(1- Atl
A= F&.
1+ apAtl

It is then straightforward to prove that far> %

1-—(A—-a)uAtl
1+ aupAtl

uniformly in w. Since it can be shown that for all mostly used interpolation schemes
amplification factorfF| < 1 for all w (see, e.g., [21]), the desired stability result follows
independently of the order of the interpolation.
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